Finite Generation of the Cohomology of Quotients of Pbw Algebras
نویسنده
چکیده
In this article we prove finite generation of the cohomology of quotients of a PBW algebra A by relating it to the cohomology of quotients of a quantum symmetric algebra S which is isomorphic to the associated graded algebra of A. The proof uses a spectral sequence argument and a finite generation lemma adapted from Friedlander and Suslin.
منابع مشابه
Derivations on Certain Semigroup Algebras
In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.
متن کاملModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملFinite Generation of the Cohomology of Some Skew Group Algebras
We prove that some skew group algebras have Noetherian cohomology rings, a property inherited from their component parts. The proof is an adaptation of Evens’ proof of finite generation of group cohomology. We apply the result to a series of examples of finite dimensional Hopf algebras in positive characteristic.
متن کامل